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R. Bonino ay, N. Borodai bj, J. Brack by, P. Brogueira bl, W.C. Brown bz, R. Bruijn bu, P. Buchholz an, A. Bueno br,
R.E. Burton bw, K.S. Caballero-Mora ak, L. Caramete ak, R. Caruso au, A. Castellina ay, O. Catalano ax, G. Cataldi ar,
L. Cazon bl, R. Cester av, J. Chauvin ae, S.H. Cheng cg, A. Chiavassa ay, J.A. Chinellato p, A. Chou ca,cd, J. Chudoba y,
R.W. Clay k, M.R. Coluccia ar, R. Conceição bl, F. Contreras i, H. Cook bu, M.J. Cooper k, J. Coppens bf,bh,
A. Cordier ac, U. Cotti bd, S. Coutu cg, C.E. Covault bw, A. Creusot ab,bn, A. Criss cg, J. Cronin ci, A. Curutiu ak,
S. Dagoret-Campagne ac, R. Dallier af, S. Dasso d,f, K. Daumiller ah, B.R. Dawson k, R.M. de Almeida p,v,
M. De Domenico au, C. De Donato aq,be, S.J. de Jong bf, G. De La Vega h, W.J.M. de Mello Junior p,
J.R.T. de Mello Neto u, I. De Mitri ar, V. de Souza n, K.D. de Vries bg, G. Decerprit ab, L. del Peral bq, O. Deligny aa,
H. Dembinski ah,aj, N. Dhital cc, C. Di Giulio ap,at, J.C. Diaz cc, M.L. Díaz Castro m, P.N. Diep cn, C. Dobrigkeit p,
W. Docters bg, J.C. D’Olivo be, P.N. Dong aa,cn, A. Dorofeev by, J.C. dos Anjos a, M.T. Dova e, D. D’Urso as,
I. Dutan ak, J. Ebr y, R. Engel ah, M. Erdmann al, C.O. Escobar p, A. Etchegoyen b, P. Facal San Luis ci,
I. Fajardo Tapia be, H. Falcke bf,bi, G. Farrar cd, A.C. Fauth p, N. Fazzini ca, A.P. Ferguson bw, A. Ferrero b, B. Fick cc,
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A. Insolia au, F. Ionita ci, A. Italiano au, C. Jarne e, S. Jiraskova bf, K. Kadija w, K.H. Kampert ag, P. Karhan x,
P. Kasper ca, B. Kégl ac, B. Keilhauer ah, A. Keivani cb, J.L. Kelley bf, E. Kemp p, R.M. Kieckhafer cc, H.O. Klages ah,
M. Kleifges ai, J. Kleinfeller ah, J. Knapp bu, D.-H. Koang ae, K. Kotera ci, N. Krohm ag, O. Krömer ai,
D. Kruppke-Hansen ag, F. Kuehn ca, D. Kuempel ag, J.K. Kulbartz am, N. Kunka ai, G. La Rosa ax, C. Lachaud ab,
P. Lautridou af, M.S.A.B. Leão t, D. Lebrun ae, P. Lebrun ca, M.A. Leigui de Oliveira t, A. Lemiere aa,
A. Letessier-Selvon ad, I. Lhenry-Yvon aa, K. Link ak, R. López bb, A. Lopez Agüera bs, K. Louedec ac,
J. Lozano Bahilo br, A. Lucero b,ay, M. Ludwig ak, H. Lyberis aa, M.C. Maccarone ax, C. Macolino ad, S. Maldera ay,
D. Mandat y, P. Mantsch ca, A.G. Mariazzi e, J. Marin i,ay, V. Marin af, I.C. Maris ad, H.R. Marquez Falcon bd,
G. Marsella aw, D. Martello ar, L. Martin af, H. Martinez bc, O. Martínez Bravo bb, H.J. Mathes ah,
J. Matthews cb,ch, J.A.J. Matthews ck, G. Matthiae at, D. Maurizio av, P.O. Mazur ca, G. Medina-Tanco be,
M. Melissas ak, D. Melo b,av, E. Menichetti av, A. Menshikov ai, P. Mertsch bt, C. Meurer al, S. Mićanović w,
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a b s t r a c t

In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for
an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of
distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We
apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid
of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the
LTP functions are derived for energies in the range between 1017 and 1019 eV and zenith angles up to 65�.
A parametrization combining a step function with an exponential is found to reproduce them very well in
the considered range of energies and zenith angles. The LTP functions can also be obtained from data

1 Deceased.
E-mail address: auger_spokespersons@fnal.gov
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Extensive Air Showers
Trigger performance
Surface detector
Hybrid detector

using events simultaneously observed by the fluorescence and the surface detector of the Pierre Auger
Observatory (hybrid events). We validate the Monte Carlo results showing how LTP functions from data
are in good agreement with simulations.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Pierre Auger Observatory has been conceived to study the
origin and the nature of ultra high-energy cosmic rays. Because
of the scarcity of the flux at the highest energies, their direct mea-
surement from space is technically unfeasible and the use of very
large detectors is required at the ground. What can be observed
is the extensive air shower of secondary particles produced in
the propagation through the atmosphere. The Pierre Auger Obser-
vatory is located near Malargüe, Argentina, at 1400 m a.s.l. and it
employes two independent and complementary measurement
techniques [1]. The surface array (SD), consisting of about 1600
water Cherenkov detectors on a triangular grid of 1.5 km spacing
covering an area of approximately 3000 km2, records the second-
ary particles at the ground and thus samples their lateral density
distribution. The fluorescence detector (FD), consisting of 24 tele-
scopes at four sites, overlooks the surface array and observes the
longitudinal profile of air showers by collecting the fluorescence
light emitted along the path through the atmosphere [2]. Unlike
the surface detector array with its nearly 100% duty cycle, the FD
can only operate on clear and moonless nights giving an overall
duty cycle of about 13% [3]. As a consequence, only a fraction of
showers are observed by both detectors. For these events, called
hereafter ‘‘hybrid’’, the combination of information from the sur-
face array and the fluorescence telescopes enhances the recon-
struction capability. Energy and direction reconstruction accuracy
of hybrid events is in fact better than the one the SD and FD could
achieve independently.

One of the main goals of the Pierre Auger Observatory is to mea-
sure the flux of cosmic rays at the highest energies. This task relies
on an accurate determination of the detector exposure for SD-only
[4] and hybrid [3] operation modes. The hybrid exposure is calcu-
lated using the simultaneous simulation of FD and SD response. Be-
sides the dependence on energy and distance to an FD-site, the
hybrid exposure is influenced by several factors including the
atmospheric conditions, the trigger status of all active detectors
and their instantaneous data taking configuration. The calculation
of the SD response is based on the deep knowledge of the array
capability to trigger once a shower with a given energy and zenith
angle hits the ground. Since the trigger in an EAS array is always a
combination of trigger states of neighboring detectors, the accep-
tance of any EAS array is directly connected to the probability that
an individual detector triggers when a shower lands at a certain
distance from it. This defines the concept of ‘‘Lateral Trigger Prob-
ability’’ function. This function has been used as a powerful tool for
simulations in the analysis for the measurement of the hybrid en-
ergy spectrum [5] and of the atmospheric depth at shower maxi-
mum [6].

The trigger design of the Auger surface detector is described in
detail in [4]. Each water Cherenkov detector of the surface array
has a 10 m2 water surface area and 1.2 m water depth, with three
9 in photomultiplier tubes (PMTs) looking through optical coupling
material into the water volume, which is contained in a Tyvek�

reflective liner. The signals provided by each PMT are digitised
by 40 MHz 10-bit flash analog to digital converters (FADCs) [1].
The achieved dynamical range is sufficient to cover with good pre-
cision both the signals produced in the detectors near to the
shower axis (� 1000 particles/ls) and those produced far from
the shower axis (� 1 particle/ls). We recall here the basic structure

of the used trigger algorithms. The two first levels (T1 and T2) are
formed at each surface detector. Each trigger level can be divided
in two modes, a threshold trigger (TH) and a time-over-threshold
trigger (ToT). The first level threshold trigger (TH-T1) requires
the coincidence of the signals from the three PMTs equipping each
station, each PMT signal being above 1.75 ‘‘Vertical Equivalent
Muon’’ (VEM).2 The TH-T1 trigger is used to reduce the rate due to
atmospheric muons to �100 Hz and can reach the second level,
TH-T2, when the peak signal reaches at least 3.2 VEM in coincidence
between 3 PMTs signals, further reducing the rate to �20 Hz. The
second mode, the ToT, requires at least 13 time bins (i.e. more than
325 ns) in 120 FADC bins of a sliding window of 3 ls to be above a
threshold of 0.2 VEM in coincidence in 2 out of 3 PMTs. Time-
over-threshold trigger stations are automatically promoted to the
second level. The threshold trigger is especially efficient at detecting
strong narrow signals, mostly encountered in horizontal showers or
close to the axis of vertical showers. On the other hand, the ToT is
intended to select sequences of small signals spread in time. This
is typical of low energy vertical showers dominated by an electro-
magnetic component or of high energy showers triggering stations
at large distance from the shower axis because of muons produced
high in the atmosphere.

Higher level triggers are obtained by requiring the spatial and
temporal coincidence of at least three stations satisfying the T2
conditions. In particular, for zenith angles below 60�, the full effi-
ciency for SD is reached at 1018.5 eV [4]. In addition, if at least
one FD telescope triggers in coincidence with one second level trig-
ger station, a hybrid trigger is formed. Since FD has a lower energy
threshold, hybrid events are also detected below the minimum en-
ergy for an independent SD trigger. For zenith angles below 60�,
the hybrid detector reaches nearly full efficiency at 1018 eV [3].

In Section 2, the concept of a Lateral Trigger Probability (LTP)
function is formalized and applied to the particular case of the sur-
face detector of the Pierre Auger Observatory. In Section 3, the LTP
functions for a single time-over-threshold trigger station are de-
rived and parametrized for different primary particles (proton,
iron, photon) and their dependence on energy and zenith angle is
explored for zenith angles up to 65� and for energies between
1017 and 1019 eV. This energy range is relevant as it covers the
interval in which the SD-only and the hybrid detection mode be-
come fully efficient. The dependence on the choice of the hadronic
interaction models is also discussed in Section 3. In Section 4,
hybrid data are finally used to validate the simulation and to esti-
mate the impact of weather conditions on the observed efficiency.
The LTP functions are found to reproduce very well the detector re-
sponse over a wide range of energies and zenith angles.

2. Concept of Lateral Trigger Probability

The trigger probability of a single water Cherenkov detector de-
pends on several independent physical parameters: (i) the charac-
teristics of the primary cosmic ray that initiates an air shower, e.g.,

2 The distribution of measured light due to atmospheric muons produces a peak in
the PMT charge distribution, Qpeak

VEM (or VEM in short), as well as a peak in that of the
pulse height, Ipeak

VEM, both of them being proportional to those produced by a vertical
through-going muon [1].
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its energy and mass, (ii) the type and geometry of the detector used
to observe air showers (in the following we will only study water
Cherenkov detectors used for the surface detector array of the
Pierre Auger Observatory), (iii) the trigger condition used to detect
a signal from air showers, (iv) the geometry of the incoming
shower, e.g. its incidence zenith angle and position with respect
to the detector. To formalize these dependencies we define the
Lateral Trigger Probability function KA,E,h,Tr(r,/) as the probability
to trigger on an air shower induced by a primary particle of energy

E, mass A and zenith angle h [7]. Here, r and / are the radial
coordinates of the single detector in the plane normal to the
shower axis (shower frame). Using a trigger condition Tr, this prob-
ability is simply given by:

KA;E;h;Trðr;/Þ ¼
N1

N1 þ N0
: ð1Þ

where N1 and N0 are respectively the number of triggered and un-
triggered detectors with coordinates r and / in the shower frame.
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Fig. 1. Lateral Trigger Probability from simulations (proton primary) for a ToT station at a given energy, from 1017 eV up to 1019 eV in steps of 0.5 in the logarithmic scale.
Different bins of cosh are also shown together with a fit performed according to Eq. (2), superimposed as a continuous line.
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3. Simulations

The LTP functions have been derived using detailed simulations
of the EAS development and of the detector response. The simula-
tion sample consists of about 15000 CORSIKA [8] showers (proton,

iron and photon primaries) with zenith angle distributed as sinh
cosh (h < 65�) and energies ranging between 1017 and 1019 eV in
steps of 0.25 in the logarithmic scale. A ‘‘thin sampling’’ mecha-
nism at the level of 10�6 (optimal thinning) is applied following
the standard method used for CORSIKA simulation with energies
larger than 1016 eV [9]. The showers have been generated with
the models QGSJETII [10] and FLUKA [11] for high and low energy
hadronic interactions.

In the simulation, the position of the shower core (i.e. the inter-
section of the shower axis with the ground) is uniformly distrib-
uted over the surface array and each shower is used 5 times,
each time with a different core position, in order to cover different
areas of the array and explore all the detector configurations. The
surface detector response is simulated using GEANT4 [12] and
adopting the sampling procedure to regenerate particles in a
ground detector from thinned air shower simulations as described
in [13]. The entire detector simulation is carried out within the
framework provided by the Auger Offline software [14].

The trigger status of SD stations is inspected within a radius of
3 km from the shower axis and the Lateral Trigger Probability is
then derived according to Eq. (1). At distances larger than 3 km,
the trigger efficiency is negligibly small for the class of events stud-
ied in this paper. All trigger modes of the surface detector are sim-
ulated in detail at all levels. However, for events with zenith angles
below 65�, the majority of the stations forming a second level trig-
ger satisfy the ToT condition. In particular, for the considered ze-
nith angles, the fraction of TH-T2 trigger stations not being also
ToT is about 1%, approximately independent of the energy. Thus,
we focus the analysis on the ToT stations.

The Lateral Trigger Probability for a ToT station is shown in
Fig. 1 at a given energy and for different ranges of the cosine of
the zenith angle h. The maximum effective distance for detection
increases with energy and, for a given energy, with the cosine of
the zenith angle, i.e. events with larger zenith angle tend to trigger
less due to the attenuation of their electromagnetic component.
For moderately inclined showers, an asymmetry is expected in
the signal detected in the stations placed at the same distance to
the shower axis but with different azimuth in the shower frame
[15]. Indeed, secondary particles arriving earlier traverse less
atmosphere and are less attenuated than the late ones. As a conse-
quence, early stations may exhibit larger trigger probabilities and
produce larger signals. Actually, for zenith angles below 65�, this
effect has been found to have a quite low influence on the trigger
probability, only noticeable above 30� (in simulations as well as
in the data). In the following we consider LTP functions averaged
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over all azimuths in the showers frame. A more detailed treatment
including the azimuthal dependence does not introduce measur-
able differences for acceptance calculations.

A fit combining a step function (close to the axis) with an expo-
nential (further away) reproduces reasonably well the full simu-
lated data set. The form of the fit function used is:

LTPðrÞ ¼
1

1þe�
r�R0
DR

r 6 R0

1
2 eC�ðr�R0Þ r > R0

8<
: ð2Þ

where R0, DR and C are free fit parameters, with R0 being the distance
where LTP is equal to 0.5. A fit performed according to Eq. (2) is
superimposed on each plot shown in Fig. 1. As an example, the
ToT trigger probability at energy E=1019 eV and for two angular bins
(vertical showers on the left and showers with larger zenith angle on
the right) is shown in Fig. 2: the exponential can reproduce very well
the tail of the probability distribution at large distances from axis, in
particular for inclined events. The dependences of fit parameters R0,
DR and C on energy and zenith angle can be parametrized by
quadratic polynomials in the variables cosh and log10(E/eV). The
corresponding coefficients are tabulated in the Appendix for proton,
iron and photon primaries. In Fig. 3, the ToT trigger probability from
parametrization has been superimposed on the simulation (proton
primary, all zenith angles up to 65� are merged). The comparison
is performed as in the following. For each simulated event, i.e. for
a certain primary, energy and arrival direction, the LTP is calculated
using the parametrization (lines) and shown together with the full
simulation (points). The agreement is remarkably good in the entire
energy range for proton (shown in the figure) and for iron and pho-
ton primaries.

3.1. Dependence on primary mass

The detector response to showers induced by different primary
particles is shown in Fig. 4, for two classes of events, vertical
(0� < h < 38�) on the top and moderately inclined (38� < h < 65�)
on the bottom. Because of their larger number of muons, showers
induced by iron nuclei provide a higher trigger capability at larger
distances than those induced by protons, for all zenith angles.
However, the difference between proton and iron is too small to
give any hint for mass composition analysis. On the other hand,
the LTP functions for photon primaries differ sensibly from those
of hadrons (they vanish at shorter distances, about 500 m less at
an energy of 1019 eV). This is a consequence of the structure of
the lateral distribution of photon showers, i.e. at a given energy,
their effective footprint at the ground is smaller than the one of ha-
drons. Moreover, in photon showers there is a much smaller num-
ber of muons.

It is worth noting that the energy threshold corresponding to
full efficiency for SD, derived from data and simulation in
Ref. [4], has been found to be compatible with the expectation
for hadronic primaries.

3.2. Dependence on hadronic interaction model

Different choices of high energy interaction models influence
the simulation of shower development and could affect the
expected trigger efficiency. The dependence of the Lateral Trigger
Probability on the assumptions for the hadronic interaction model
has been investigated using a sample of simulated showers
(proton) produced with SIBYLL [16]. As shown in Fig. 5, the LTP
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functions derived with the two hadronic interaction models differ
only at large distance from the shower axis, in a range where the
efficiency degrades rapidly. In this region, SIBYLL gives a lower

LTP since this model predicts on average a smaller number of
muons. Those differences are however too small to imply an obser-
vable impact on the detector acceptance.
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4. LTP functions from data and comparison with simulation

The LTP functions can be derived from data by calculating the
ratio of triggered to active stations within a given distance from
the reconstructed shower axis. While doing this, the actual surface
detector configuration must be accurately taken into account as a
function of time. In addition, only high quality data are selected
to avoid biases due to mis-reconstructed energies and/or arrival
directions. The use of hybrid events allows to derive LTP functions
also for energies below the threshold of an independent SD trigger.
This is a benefit of the hybrid design that aims to fully exploit the
distinctive potential offered by the Pierre Auger Observatory. Two
years of hybrid data collected between June 2006 and May 2008
were used for this study. The events are selected as described in
[3] and this ensures an angular resolution of about 0.6� and a core
position determination better than 70 m. Further requirements on
the goodness of the reconstructed longitudinal profile provide an
energy resolution of about 10% above 1018 eV and less than 15%
at lower energies [3].

The LTP measured from data is shown in Fig. 6 for different en-
ergy intervals. To verify the performance of the parametrization
described in Section 3, for each selected event, the LTP of any active
station within 3 km from the shower axis is calculated using the
reconstructed energy and direction. The predicted probability
(dashed line) is then superimposed on data (points), see Fig. 6. In
this way, data are compared to simulation taking into account
the actual status of the detector. The shaded area gives the interval
of expected values assuming that data are pure proton (lower
edge) or pure iron (upper edge). A 50% proton and 50% iron mixed
composition has been assumed for the parametrization (dashed
line). The agreement is good over the entire energy range. This fea-
ture actually starts at very low energies, even below the range of
full efficiency for the hybrid detection [3]. In this case, whereas
in data only events with at least one SD ToT station are selected,
in simulation also the events that did not trigger at all are taken
into account in the calculation of the probability. As a consequence,
the comparison between data and simulation could be biased.
However, the good level of agreement actually reached reflects
the fact that the hybrid detection is very close to fully efficient
and the energy reconstruction remains reasonably good within
the scope of this analysis down to energy of about 1017.5 eV.

For each energy interval considered, the agreement between
data and simulation has also proven to hold in two zenith angle
bands (0�–38� and 38�–65�), see Fig. 7.

4.1. Impact of weather effect on LTP

The effect of atmospheric variations (in pressure, temperature
and air density) on extensive air showers development has been
extensively studied with the surface detector data [17]. A signifi-
cant modulation of the rate of events with the atmospheric vari-
ables, both on a seasonal scale (� 10%) and on a shorter time
scale (� 2% on average during a day) has been observed. This
modulation is mainly explained as due to the change with the air
density of the Molière radius near ground thus influencing the trig-
ger probability and the rate of events above a fixed energy. Hybrid
data in the energy range around 1018 eV have been used to inves-
tigate this effect on LTP. Data have been separated by season and
are shown, together with the parametrization, for austral winter
and austral summer, see Fig. 8, top panel. The ratio of summer
and winter relative to the parametrization is shown in the bottom
panel. Results qualitatively match the expectation. Higher temper-
ature at the ground, as for the austral summer, induces a reduction
of the air density weakly enhancing the trigger probability at a gi-
ven distance relative to all other seasons. Nevertheless the effect is
almost negligible on the scale of the measurable trigger efficiency.

5. Summary and Conclusions

In the previous sections we have introduced the concept of
Lateral Trigger Probability function as a tool to characterize the
single detector trigger efficiency. We have derived LTP functions
for the particular case of the surface detector of the Pierre Auger
Observatory using simulations. We discussed their evolution with
different physical parameters of air showers such as the energy,
zenith angle and nature of the primary particle. We also investi-
gated the impact of choosing different hadronic interaction models
in the simulations. Furthermore, we estimated the LTP functions at
different energies and zenith angles using hybrid data and showed
that seasonal effects are visible in the trigger probabilities re-
trieved from data as expected from previous studies [17].

The good agreement between simulations and data over a wide
energy range (between 1017.5 eV and 1019 eV) demonstrates the
accuracy of the different aspects of the simulation procedure (i.e.
air shower, detectors and trigger simulation) as well as the quality
of the reconstruction obtained for hybrid data. These comparisons
support and validate the use of simulated LTP functions in the esti-
mate of the hybrid aperture described in [3]. Monitoring the LTP
functions over a longer period of time can be used to study the
long-term performance of the SD trigger for individual stations
both above and below the acceptance saturation energy.

As a final consideration, LTP functions can be derived at higher
energies using SD-only data because, at energy above �1018.5 eV,
despite the statistics of hybrids becoming small, the surface detec-
tor is fully efficient and the geometrical reconstruction is accurate.
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As mentioned in the Introduction, the probability of a high level
trigger for the surface detector is a combination of single detector
probabilities. Hence LTP functions provide a robust and simple
method to estimate the energy or zenith angle dependence of SD
acceptance for any arbitrary configuration. This makes this tech-
nique a valuable tool to design other experiments and future
enhancements of the Pierre Auger Observatory.
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Appendix A. LTP parametrization

The LTP is fitted, as discussed in Section 3, to the following function:

LTPðrÞ ¼
1

1þe�
r�R0
DR

r 6 R0

1
2 eC�ðr�R0Þ r > R0

8<
: ðA:1Þ

with R0 being the distance where the LTP is equal to 0.5.

The dependences of fit parameters R0, DR and C on energy and
zenith angle can be parametrized by quadratic polynomials in the
variables cosh and log10(E/eV). The corresponding coefficients are
given for proton, iron and photon primaries (0� < h < 65�), sepa-
rately. Concerning the accuracy of the parameters, a change at
the level of (1 � 5)% propagates approximately linearly in the re-
turned value of the parametrization.

A.1. Proton showers

The overall parametrization for proton primaries (0� < h < 65�)
is summarized in the following matrix equation:

R0

km
¼

1

cos h

cos2 h

0
BB@

1
CCA

T

�
4:30 � 101 �6:21 � 100 2:09 � 10�1

�9:89 � 100 3:22 � 100 �1:34 � 10�1

�8:24 � 100 �2:29 � 10�1 3:11 � 10�2

0
BB@

1
CCA

2
664

�

1

log10ðE=eVÞ

log2
10ðE=eVÞ

0
BB@

1
CCA

3
775

DR
km
¼

1

cos h

cos2 h

0
BB@

1
CCA

T

�
�3:90 � 100 4:38 � 10�1 �1:15 � 10�2

1:19 � 101 �1:37 � 100 3:82 � 10�2

�6:19 � 100 7:14 � 10�1 �1:99 � 10�2

0
BB@

1
CCA

2
664

�

1

log10ðE=eVÞ

log2
10ðE=eVÞ

0
BB@

1
CCA

3
775

C

km�1 ¼

1

cos h

cos2 h

0
BB@

1
CCA

T

�
�3:28 � 102 3:48 � 101 �9:16 � 10�1

�4:37 � 101 3:96 � 100 �1:10 � 10�1

0 0 0

0
BB@

1
CCA

2
664

�

1

log10ðE=eVÞ

log2
10ðE=eVÞ

0
BB@

1
CCA

3
775

A.2. Iron showers

The overall parametrization for iron primaries (0� < h < 65�) is
summarized in the following matrix equation:

R0

km
¼

1

cos h

cos2 h

0
B@

1
CA

T

�
4:90 � 101 �6:97 � 100 2:33 � 10�1

�9:23 � 103 3:07 � 100 �1:30 � 10�1

�24:4 � 103 1:69 � 100 �2:43 � 10�2

0
BB@

1
CCA

2
664

�

1

log10ðE=eVÞ

log2
10ðE=eVÞ

0
BB@

1
CCA

3
775

DR
km
¼

1
cos h

cos2 h

0
B@

1
CA

T

�
�9:52 � 10�1 6:81 � 10�2 0

1:46 � 100 �1:04 � 10�1 0
�9:32 � 10�1 6:36 � 10�2 0

0
B@

1
CA

2
64

�
1

log10ðE=eVÞ
log2

10ðE=eVÞ

0
B@

1
CA

3
75
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C

km�1 ¼
1

cos h

cos2 h

0
B@

1
CA

T

�
�8:82 � 102 9:50 � 101 �2:56 � 100

3:83 � 102 �4:40 � 101 1:24 � 100

0 0 0

0
B@

1
CA

2
64

�
1

log10ðE=eVÞ
log2

10ðE=eVÞ

0
B@

1
CA

3
75

A.3. Photon showers

The overall parametrization for photon primaries (0� < h < 65�)
is summarized in the following matrix equation:

R0

km
¼

1
cos h

cos2 h

0
B@

1
CA

T

�
1:07 � 102 �1:31 � 101 3:89 � 10�1

�2:46 � 102 2:90 � 101 �8:30 � 10�1

1:47 � 102 �1:70 � 101 4:78 � 10�1

0
B@

1
CA

2
64

�
1

log10ðE=eVÞ
log2

10ðE=eVÞ

0
B@

1
CA

3
75

DR
km
¼

1
cos h

cos2 h

0
B@

1
CA

T

�
9:03 � 100 �1:02 � 100 3:05 � 10�2

�2:76 � 101 3:15 � 100 �9:26 � 10�2

2:46 � 101 �2:82 � 100 8:25 � 10�2

0
B@

1
CA

2
64

�
1

log10ðE=eVÞ
log2

10ðE=eVÞ

0
B@

1
CA

3
75

C

km�1 ¼
1

cos h

cos2 h

0
B@

1
CA

T

�
�9:34 � 103 1:04 � 103 �2:91 � 101

2:60 � 104 �2:91 � 103 8:10 � 101

�1:67 � 104 1:86 � 103 �5:17 � 101

0
B@

1
CA

2
64

�
1

log10ðE=eVÞ
log2

10ðE=eVÞ

0
B@

1
CA

3
75
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